Variable-Density Radial View-Ordering and Sampling for Time-Optimized 3D Cartesian Imaging

Joseph Y. Cheng1, Tao Zhang1, Marcus T. Alley1, Michael Lustig1, Shreyas S. Vasanaivala1, John M. Pauly2

1Electrical Engineering, Stanford University, Stanford, California, United States, 2Radiology, Stanford University, Stanford, California, United States

PURPOSE: High-resolution volumetric imaging is sensitive to patient motion due to its long scan times. Depending on the k-space sampling trajectory, motion artifacts may appear as ghosting, blurring, and/or additive noise. Given the robustness of Cartesian imaging to off-resonance and other system errors, we focus on ordering the \((k_x, k_y) \)-views in 3D Cartesian imaging. We present a novel method to order and sample the \((k_x, k_y) \) Cartesian grid that is robust to motion effects and ideal for compressed sensing (CS) & parallel imaging (PI). We propose the variable-density radial view-ordering and sampling (VDRad) strategy.

METHOD:

1. Setup:
 a. For each view to collect, determine the \((k_x, k_y) \) value: k-space radius, \(k = k_x + k_y \), is adjusted for uneven acceleration and k-space angle, \(\phi = \arcsin(k) \), is adjusted to incorporate a spiral twist.
 b. Given a desired spoke length \(L \) (each spoke is made up of \(L \) views), determine the number of spokes necessary to achieve the desired acceleration to form 1 temporal phase.

2. Ordering:
 a. Order the samples first by the k-space radius and second by the k-space angle.
 b. Divide the ordered views into \(L \) rings where the number of points in each ring is proportional to the k-space magnitude (Fig. 1b).

3. Sampling for each ring: Using the k-space angle, sample and order each view according to the golden-angle [1,2]: \(360^\circ / \phi \approx 137.5^\circ \) where \(\phi = (1 + \sqrt{5})/2 \). See Fig. 1c.

4. Final re-ordering:
 a. Build spokes by selecting the n-th sample in each ring.
 b. For each spoke, the samples can be re-ordered for special considerations. For instance, the samples can be re-ordered for optimal smoothness to minimize eddy current.

EXPERIMENT: All scans were performed on a 3T GE MR750 scanner using a 3D spoiled gradient echo sequence with flip angle = 15° and bandwidth = ±62.5 kHz. Motion was measured using Butterfly navigation [3]. All images were reconstructed using ESPRIT [4], a CS & PI reconstruction algorithm. In vivo scans were performed free-breathing. See table for specific scan parameters.

<table>
<thead>
<tr>
<th>TE/TR [ms]</th>
<th>Resolution [mm³]</th>
<th>FOV [cm³]</th>
<th>Navigation time per TR [ms]</th>
<th>Coil receiver</th>
<th>Acceleration factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phantom</td>
<td>1.7/4.6</td>
<td>1.2 × 1.2 × 3.0</td>
<td>30 × 24 × 21.6</td>
<td>0.14</td>
<td>30-ch cardiac</td>
</tr>
<tr>
<td>Abdominal 1</td>
<td>1.4/3.9</td>
<td>1.0 × 1.3 × 3.0</td>
<td>34 × 27 × 21.8</td>
<td>0.096</td>
<td>32-ch torso</td>
</tr>
<tr>
<td>Abdominal 2</td>
<td>1.4/3.6</td>
<td>0.88 × 1.4 × 2.0</td>
<td>29 × 24 × 16.4</td>
<td>0.12</td>
<td>32-ch torso</td>
</tr>
</tbody>
</table>

RESULTS: The single temporal phase reconstruction of the phantom (Fig. 3a) demonstrated that the sampling mask is appropriate for CS & PI. Motion was introduced during the scan (Fig 3b), and a motion-free image (Fig. 3c) was successfully obtained by incorporating data-consistency weights [5] in the ESPRIT algorithm. Lastly, with VDRad, we were able to reconstruct high-resolution motion-free images from free-breathing scans (Fig 4) using the weighted ESPRIT algorithm with motion autofocusing [3].

DISCUSSION & CONCLUSION: Our proposed method is an alternative to motion compensated view-ordering, such as ROPE [6] and PAWS [7]. In our method, scan efficiency is partially sacrificed for ease of implementation and robustness to all types of motion. The radial path and golden-angle ordering ensures that k-space is evenly covered even if acquisitions must be discarded. Additionally, for multi-phase imaging, each phase will have a sufficiently different sampling pattern. Lastly, the variable-density sampling ensures an ideal undersampling point-spread-function for CS & PI reconstructions. Some ideal applications for the sampling/ordering include retrospective gating and dynamic contrast enhanced abdominal MRI.